An Analysis of the Performance of Artificial Neural Network Technique for Stock Market Forecasting
نویسنده
چکیده
In this paper, we showed a method to forecast the daily stock price using neural networks and the result of the Neural Network forecast is compared with the Statistical forecasting result. Stock price prediction is one of the emerging field in neural network forecasting area. This paper also presents the Neural Networks ability to forecast the daily Stock Market Prices. Stock market prediction is very difficult since it depends on several known and unknown factors while the Artificial Neural Network is a popular technique for the stock market Forecasting. The Neural Network is based on the concept of ‘Learn by Example’. In this paper, Neural Networks and Statistical techniques are employed to model and forecast the daily stock market prices and then the results of these two models are compared. The forecasting ability of these two models is accessed using MAPE, MSE and RMSE. The results show that Neural Networks, when trained with sufficient data, proper inputs and with proper architecture, can predict the stock market prices very well. Statistical technique though well built but their forecasting ability is reduced as the series become complex. Therefore, Neural Networks can be used as an better alternative technique for forecasting the daily stock market prices. KeywordsForeign Investors Inflow, Mean Square Error, Sum of Square Error, Mean Absolute Error, Root Mean Squared Error, Wholesale Price Index, Money Supply Broad Money, Money Supply Narrow Money, Exchange Rate, Industrial Production.
منابع مشابه
Comparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange
During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملProvide a stock price forecasting model using deep learning algorithms and its use in the pricing of Islamic bank stocks
Predicting stock prices is complicated; various components, such as the general state of the economy, political events, and investor expectations, affect the stock market. The stock market is in fact a chaotic nonlinear system that depends on various political, economic and psychological factors. To overcome the limitations of traditional analysis techniques in predicting nonlinear patterns, ex...
متن کاملForecasting the Tehran Stock market by Machine Learning Methods using a New Loss Function
Stock market forecasting has attracted so many researchers and investors that many studies have been done in this field. These studies have led to the development of many predictive methods, the most widely used of which are machine learning-based methods. In machine learning-based methods, loss function has a key role in determining the model weights. In this study a new loss function is ...
متن کاملForecasting the Profitability in the Firms Listed in Tehran Stock Exchange Using Data Envelopment Analysis and Artificial Neural Network
Profitability as the most important factor in decision-making, has always been considered by stakeholders in the company's profitability. Also can be a basis for evaluating the performance of the managers. The ability to predict the profitability can be very useful to help decision-makers. That's why one of the most important issues is the expected profitability. The importance of these foreca...
متن کاملStock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models
Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...
متن کامل